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Abstract

We present a geometric framework for discrete classical field theories, where fields are modeled as “morphisms” defined on
a discrete grid in the base space, and take values in a Lie groupoid. We describe the basic geometric set-up and derive the field
equations from a variational principle. We also show that the solutions of these equations are multisymplectic in the sense of
Bridges and Marsden. The groupoid framework employed here allows us to recover not only some previously known results on
discrete multisymplectic field theories, but also to derive a number of new results, most notably a notion of discrete Lie–Poisson
equations and discrete reduction. In a final section, we establish the connection with discrete differential geometry and gauge
theories on a lattice.
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1. Introduction

The idea of studying mechanical systems on Lie groupoids first arose in the context of discrete dynamical systems
when Moser and Veselov (see [1]) considered the pair groupoid Q × Q as a discretization of the tangent bundle
T Q and used it in their study of discrete integrable systems. Their idea was subsequently used by Weinstein [2], who
introduced (among other things) Lagrangian mechanics on an arbitrary Lie groupoid, established a suitable variational
principle for it and laid the foundations of discrete reduction.

The theme of mechanics on a Lie groupoid was then picked up again in [3], in which the authors extended
Weinstein’s approach by fully exploring the geometry of the various prolongation bundles associated to the groupoid.
They gave a direct construction of the Poincaré–Cartan forms and the Legendre transformations, proved the
symplecticity of the discrete flow and made the connection with numerous examples of discrete mechanical systems
that had been studied before (see [4,5,2] and the references therein).

Meanwhile, the foundational idea of Moser and Veselov of replacing T Q by the discretization Q× Q was extended
to the case of field theories by Marsden, Patrick and Shkoller in [6]. Their objective was a systematic study of the
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geometry of discrete multisymplectic field theories, aimed at the design of robust numerical integrators that conserve
an appropriate notion of “symplecticity”. The symplectic nature of their discrete field theories is a consequence of the
variational structure and is expressed in terms of a set of distinct one-forms θ i

L , called Poincaré–Cartan forms, such
that

∑
i θ

i
L = dL , and they observed that symplectic discretization schemes indeed yield superior results.

A similar approach, but aimed instead at Hamiltonian multisymplectic PDEs, was proposed in [7], based on
Bridges’ notion of multisymplecticity in [8,9] (see also [10,11]), and again it was observed that multisymplectic
discretizations do indeed have remarkable energy and momentum conservation properties. Moreover, they showed
that a number of classical numerical schemes such as the Euler or Preissman box scheme have a natural interpretation
as multisymplectic integrators.

The objective of this paper is to establish the discrete counterpart of Lagrangian multisymplectic field theory, in the
case where the discrete fields take values in an arbitrary Lie groupoid. In doing so, we extend both discrete Lagrangian
field theory, as treated in [6], as well as mechanics on Lie groupoids [3]. We use techniques from groupoid mechanics
and show how they can be generalized quite easily to field theories. In doing so, we develop some new insights
into some of the constructions in [6]. Finally, we present a number of new results which require the full machinery
developed here. The most notable example is a discrete version of the Lie–Poisson equations for field theories. We
finish by presenting some remarks on discrete differential geometry, as it turns out that our way of modeling discrete
fields is reminiscent of the way in which discrete connections are usually introduced.

2. Discrete mechanics on Lie groupoids

In this section, we recall some of the basic definitions and results from the theory of Lie groupoids and algebroids.
It is not our intention to give a detailed introduction to the subject: for a more in-depth overview, the reader is referred
to [12] and the references therein. We will also recall some of the constructions in [3] that will be generalized in the
following sections. We note that the definition of a groupoid used here agrees with [3,2] but differs from [13] with
respect to the order of writing the product gh.

2.1. Lie groupoids

A groupoid is a set G with a partial multiplication m, a subset Q of G whose elements are called identities, two
surjective maps α, β : G → Q (called source and target maps respectively), which both equal the identity on Q, and
an inversion mapping i : G → G. A pair (g, h) is said to be composable if the multiplication m(g, h) is defined; the
set of composable pairs will be denoted by G2. We will denote the multiplication m(g, h) by gh and the inversion
i(g) by g−1. In addition, these data must satisfy the following properties, for all g, h, k ∈ G:

(1) the pair (g, h) is composable if and only if β(g) = α(h), and then α(gh) = α(g) and β(gh) = β(h);
(2) if either (gh)k or g(hk) exists, then both do, and they are equal;
(3) α(g) and β(g) satisfy α(g)g = g and gβ(g) = g;
(4) the inversion satisfies g−1g = β(g) and gg−1

= α(g).

On a groupoid, we have a natural notion of left translation lg , defined as lg(h) = gh, for any h ∈ G such that
α(h) = β(g). There is a similar definition for a right translation rg .

A morphism of groupoids is a pair of maps φ : G → G ′ and f : Q → Q′ satisfying α′
◦ φ = f ◦ α,

β ′
◦ φ = f ◦ β and such that φ(gh) = φ(g)φ(h) whenever (g, h) is composable. Note that (φ(g), φ(h)) is a

composable pair whenever (g, h) is composable.
A Lie groupoid is a groupoid for which G and Q are differentiable manifolds, with Q a closed submanifold of G,

the maps α, β,m and i are smooth and α and β are submersions. We denote by Fα(g) the α-fibre through g ∈ G,
i.e. Fα(g) = α−1(α(g)), with a similar definition for Fβ(g). As α and β are submersions, both Fα(g) and Fβ(g) are
closed submanifolds of G.

Any Lie group G can be considered as a Lie groupoid over a singleton {e}, where the anchors α, β map any element
onto x and the multiplication is defined everywhere. Another example of a Lie groupoid is the pair groupoid Q × Q,
where α(q1, q2) = q1, β(q1, q2) = q2, and multiplication is defined as (q1, q2) · (q2, q3) = (q1, q3). For other, less
trivial examples, we refer the reader to the works mentioned above.
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2.2. Lie algebroids

A Lie algebroid over Q is a vector bundle τ : E → Q together with a vector bundle map ρ : E → T Q (called the
anchor map of the Lie algebroid) and a bracket [·, ·] : Sec(E)× Sec(E) → Sec(E) defined on the sections of τ , such
that

(1) Sec(E) is a real Lie algebra with respect to [·, ·];
(2) ρ([φ,ψ]) = [ρ(φ), ρ(ψ)], for all φ,ψ ∈ Sec(E), where the bracket on the right-hand side is the usual Lie

bracket of vector fields on Q and we write the composition ρ ◦ φ as ρ(φ);
(3) [φ, fψ] = f [φ,ψ] + ρ(φ)( f )ψ , for all φ,ψ ∈ Sec(E) and f ∈ C∞(Q).

The Lie algebroid structure allows us to define an exterior differential dE on the space of sections of
∧

∗
(E∗), as

follows: for functions f ∈ C∞(Q), we put dE f (v) = ρ(v) f , for v ∈ E , while for sections θ of
∧k
(E∗), we define

dEθ by

dEθ(v0, v1, . . . , vk) =

∑
i

ρ(vi )θ(v0, . . . , v̂i , . . . , vk)+

∑
i< j

(−1)i+ jθ([vi , v j ], v0, . . . , v̂i , . . . , v̂ j , . . . , vk).

It can be shown that dE is nilpotent: d2
E = 0.

To any Lie groupoid G over Q one can associate a Lie algebroid τ : AG → Q as follows. At each point x ∈ Q,
the fibre Ax G is the vector space Vxα = ker Txα and the anchor map ρ on Ax G is identified with the restriction
of Txβ to Vxα. In order to define the bracket on the space of sections, we note that there exists a bijection between
sections of τ and left- and right-invariant vector fields on G. More specifically, if v is a section of τ , then the left- and
right-invariant vector fields are denoted as vL and vR respectively, and defined by

vL(g) = Tβ(g)lg(vβ(g)) and vR(g) = Tα(g)(rg ◦ i)(vα(g)). (1)

Let v and w be sections of τ . The bracket [v,w] is then defined by noting that [vL , wL
] is again a left-invariant vector

field, and putting

[v,w]
L

= [vL , wL
].

We remark that our definition of vR differs in sign from the one used in [3].
Conversely, we say that a Lie algebroid τ : E → Q is integrable whenever one can find a Lie groupoid such that E

is its associated Lie algebroid. It has been known for some years that not all Lie algebroids are integrable. Necessary
and sufficient conditions for integrability have been given in [14].

The Lie algebroid of a Lie group G is just its Lie algebra. The Lie algebroid of the pair groupoid Q × Q is the
tangent bundle T Q.

Remark 1. For a given section v of τ , we have denoted the corresponding left- and right-invariant vector fields as
vL and vR , respectively. We will also use this notation for the pointwise operation, by denoting, for vx an element of
Ax G and g ∈ α−1(x) ⊂ G, the left translated vector Tx lg(vx ) as (vx )

L(g), and similarly the right translated vector
Tx (rg ◦ i)(vx ) as (vx )

R(g). �

2.3. Lie algebroid morphisms

Consider two vector bundles τ ′
: E ′

→ Q′ and τ : E → Q, and let (Φ, ϕ) be a vector bundle map from τ ′ to τ .
Let θ be a section of

∧k
(E∗). Then the pullback of θ by (Φ, ϕ) is the section Φ?θ of

∧k
(E ′∗) defined as

(Φ?θ)q(v1, . . . , vk) = θϕ(q)(Φ(v1), . . . ,Φ(vk)), v1, . . . , vk ∈ Eq .

Note that we used a “star” ? instead of an “asterisk” ∗ to denote the pullback, which should serve as a reminder
that we consider the pullback of θ by a bundle map rather than by an arbitrary differentiable map from E ′ to E .

Now, assume that both τ and τ ′ are equipped with the structure of a Lie algebroid over Q. In this case, a vector
bundle map (Φ, ϕ) is said to be a morphism of Lie algebroids if for each section θ of

∧k
(E∗),

Φ?dEθ = dE ′Φ?θ,
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where dE and dE ′ are the differentials on E and E ′, respectively. In other words, (Φ, ϕ) is a chain map. In [15–17], a
number of equivalent conditions are investigated for a bundle map to be a morphism of Lie algebroids.

2.4. The prolongation of a Lie groupoid over a fibration

Let G be a Lie groupoid over a manifold Q with source and target maps α and β and consider a fibration
π : P → Q. The prolongation PπG is the Lie groupoid over P defined as

PπG = {(g; p1, p2) ∈ G × P × P : π(p1) = α(g) and β(g) = π(p2)}.

Alternatively, PπG is defined by means of the following commutative diagram:

PπG //

��

P × P

π×π

��
G

α×β
// Q × Q

(2)

It can be shown that PπG is a Lie groupoid over P , with source and target mappings απ , βπ : PπG → P defined
as

απ (g; p1, p2) = p1 and βπ (g; p1, p2) = p2,

and with multiplication given by

(g; p1, p2)(h; p2, p3) = (gh; p1, p3).

Note that απ (h; p2, p3) = βπ (g; p1, p2) implies that α(h) = β(g). Finally, the inversion mapping is defined as

i : (g; p1, p2) 7→ (g−1
; p2, p1),

and we can regard P as a subset of PπG via the identification p 7→ (π(p); p, p).

2.4.1. The prolongation PG
There is one particular prolongation that will play a significant role in what follows. It is obtained by taking for the

fibration π : P → Q in (2) the Lie algebroid projection τ : AG → Q to obtain

PτG ⊂ G × AG × AG

which, henceforth, we also simply denote as PG. We recall that PG consists of triples (g; vx , wy), where g ∈ G,
vx ∈ Ax G, wy ∈ AyG, and x = α(g), y = β(g). It is pointed out in [3,13] that PG is isomorphic as a vector bundle
over G to the direct sum Vβ ⊕ Vα, where Vα is the subbundle of T G consisting of α-vertical vectors (and similarly
for Vβ); the isomorphism Θ : PG → Vβ ⊕ Vα is defined by

Θ(g; uα(g), vβ(g)) = (T (rg ◦ i)(uα(g)), T lg(vβ(g))). (3)

It should also be remarked that PG is a vector bundle over G, and in fact, PG can be endowed with the structure of
an integrable Lie algebroid over G, where the anchor map ρ̂ : PG → T G is given by

ρ̂ : (g; uα(g), vβ(g)) 7→ T (rg ◦ i)(uα(g))+ T lg(vβ(g)) = (uα(g))
R(g)+ (vβ(g))

L(g).

Given a pair of sections u, v of AG, one can construct a section of PG → G, shortly denoted by (u, v), by considering
the map g 7→ (g; uα(g), vβ(g)). The Lie bracket of sections of PG is then determined by the following definition:

[(u, v), (u′, v′)]PG = ([u, u′
], [v, v′

]),

where u, u′, v, v′ are sections of AG (see [3, Thm. 3.1]).
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2.5. The prolongation of a Lie algebroid over a fibration

Let τ : E → Q be a Lie algebroid and consider a fibration π : P → Q. The prolongation Pπ E is the Lie algebroid
over P defined as

Pπ E = {(a, v) ∈ E × T P : ρ(a) = Tπ(v)},

or by the following commutative diagram as

Pπ E

��

// T P

Tπ
��

E ρ
// T Q

(4)

We denote by π̂ : Pπ E → P the map defined as π̂(a, v) = πT P (v), where πT P : T P → P is the tangent bundle
projection of P . It can be shown that π̂ : Pπ E → P can be given the structure of a Lie algebroid (see [15,18,13]).

2.5.1. The prolongations Pτ (AG) and Pτ
∗

(AG)
Let G be a Lie groupoid over a manifold Q with Lie algebroid τ : AG → Q. By taking for the fibration π

underlying diagram (4) the map τ , we obtain the prolongation Pτ (AG). It is very useful to think of Pτ (AG) as a sort
of Lie algebroid analogue of the tangent bundle to AG. Indeed, Pτ (AG) can be equipped with geometric objects,
such as a Liouville section and a vertical endomorphism, which have their counterpart in tangent bundle geometry.

Similarly, by taking for π : P → Q the dual bundle τ ∗
: A∗G → Q, we obtain the prolongation Pτ

∗

(AG), which
is a Lie algebroid over A∗G and should be thought of as the Lie algebroid analogue of the tangent bundle to A∗G.
Just as any cotangent bundle is equipped with a canonical one-form, there exists a canonical section

θ : A∗G → [Pτ
∗

(AG)]∗,

defined as follows: for α ∈ A∗G and (v, Xα) ∈ (Pτ
∗

(AG))α , we put θα(v, Xα) = α(v). In the case that G is the pair
groupoid Q × Q, we have that A∗G = T ∗Q and we obtain the usual canonical one-form on T ∗Q.

It was shown in [15] that Pτ (AG), the prolongation of the Lie algebroid AG, is isomorphic to A(PG), the Lie
algebroid associated to the prolongation Lie groupoid PG.

2.5.2. The prolongations Pα(AG) and Pβ(AG)
Associated to the source and target mappings α and β of a groupoid G there are two prolongations Pα(AG) and

Pβ(AG), whose fibres over G are defined as follows: for each g ∈ G, put

Pαg (AG) = {(vα(g), Xg) ∈ Aα(g)G × TgG : T τ(vα(g)) = Tα(Xg)}

and

Pβg (AG) = {(vβ(g), Xg) ∈ Aβ(g)G × TgG : T τ(vβ(g)) = Tβ(Xg)}.

Both of these algebroids are integrable: indeed, it follows from the general theory that Pα(AG) is isomorphic to the
Lie algebroid of the prolongation PαG, and similarly for Pβ(AG).

Furthermore, we remark that there are two distinguished mappings from PG (regarded as a Lie algebroid over G)
into Pα(AG) and Pβ(AG), given by

A(Φα) : (uα(g), g, vβ(g)) 7→ (uα(g), T (rg ◦ i)(uα(g))+ T lg(vβ(g))) ∈ Pα(AG)

and

A(Φβ) : (uα(g), g, vβ(g)) 7→ (vβ(g), T (rg ◦ i)(uα(g))+ T lg(vβ(g))) ∈ Pβ(AG).

The notation A(Φα) and A(Φβ) serves as a reminder of the fact that these Lie algebroid maps stem from morphisms
between the corresponding groupoids (see [3]).
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3. The discrete jet bundle. Discrete fields

Let us now turn to field theory. As is customary in most geometric treatments, we model physical fields as sections
of a fibre bundle π : Y → X . This approach has received a lot of attention in the past and we refer the reader to [19–
21] for more information. For the sake of simplicity, we will assume from now on that the base space X of π is R2,
and that π is trivial, i.e. π is given by π : R2

× Q → R2, where Q is the standard fibre.
It is our aim in this section to present a geometric approach to discrete field theories. A crucial element of this

set-up is the concept of discrete jet bundle. Before going into details, it is perhaps useful to start with a quick overview
of what our construction entails.

3.1. Overview

We will introduce a notion of “discrete jet bundle of π”, using two essentially different ingredients:

(1) The existence of a mesh in X = R2, consisting of a discrete subset V of X , whose elements are called vertices,
and a set E of edges, which are line segments between pairs of vertices. Associated to such a mesh is a set of
faces, where a face f is a region in R2 bounded by edges, and such that there are no edges in the interior of f .

(2) A groupoid G over the standard fibre Q of π . This is a new element, and its role will become clear in a moment.

We will define a discrete jet as a mapping which assigns to each edge of the mesh an element of G such that two
edges which have a vertex in common are mapped onto composable elements of G. We will show that each such
mapping gives rise to a groupoid morphism from the pair groupoid V × V (where V is the set of vertices) to G. In
Section 5.1 we will treat the particular case where G is the pair groupoid Q × Q. In that case, a discrete field is an
assignment of an element of Q to each point of a grid in X , which is a natural way, used for example in finite-difference
methods, to think of discrete fields (see [6]).

3.1.1. The manifold Gk

There is another, equivalent, way of thinking of discrete jets, which is closely related to the way in which continuous
jets are interpreted. Recall that we considered a trivial bundle π : R2

× Q → R2. In this case, the jet bundle
J 1π is isomorphic to the product space R2

× J 1
0 (R

2, Q), where J 1
0 (R

2, Q) is the manifold of 1-jets at 0 of maps
ϕ : R2

→ Q, which is itself isomorphic to the Whitney sum T Q ⊕ T Q. Incidentally, this is the starting point for
the so-called k-symplectic (here k = 2) treatment of field theories (see [22,23] and the references therein). Hence, a
natural interpretation of a jet at a point x ∈ R2 is as an element of T Q ⊕ T Q.

Let us now repeat this procedure for the discrete case. We start from the base space X = R2 and a given mesh
(V, E). As we argued before, there is a natural definition of the set of faces of this mesh as (connected) regions of
the plane bounded by edges. Furthermore, as the edges are represented by pairs of vertices, and faces are defined by
specifying their bounding edges, a face is completely determined by its corner vertices x1, . . . , xk , where the vertices
are ordered in such a way that the bounding edges are (xi , xi+1) (for i = 1, . . . , k − 1) and (x1, xk). Each of the pairs
(xi , xi+1) is a Veselov-type discretization of a tangent vector and, hence a face is a natural way of representing a set
of k − 1 vectors. As soon as k > 3, this set can never be linearly independent. However, it turns out that this makes
essentially no difference for the discrete approach, and might even have certain benefits in the design of numerical
methods (see [6, p. 42]). We will consider in general only meshes in which each face has the same number of edges,
which we denote henceforth as k.

Recall that in the continuous case, we interpreted jets as elements of T Q ⊕ T Q by considering the values they take
on the standard basis of R2. Let us now define a discrete jet as an assignment of k points in Q to any face {x1, . . . , xk}

of the mesh, in other words: a k-tuple {q1, . . . , qk} of points in Q (together with the face {x1, . . . , xk}). Hence the
fibre part of our space (the part involving only Q) of jets is really a discretization of T Q ⊕ · · · ⊕ T Q (k times).

As a slight generalization, we can easily replace the pair groupoid Q × Q by an arbitrary groupoid G over Q: in
this case, we are led to the study of a similar manifold Gk (consisting of “faces” in G, to be specified later), which is
the discrete counterpart of AG ⊕ · · · ⊕ AG.

In Proposition 9, we will show how both points of view, i.e. discrete jets on the one hand and the manifold Gk on
the other hand, are related.



J. Vankerschaver, F. Cantrijn / Journal of Geometry and Physics 57 (2007) 665–689 671

Fig. 1. Square mesh in R2, with counterclockwise orientation.

3.2. Discretizing the base space

3.2.1. The mesh
To discretize X = R2, we will use the concept of a mesh embedded in X . Intuitively, such a mesh consists of a

discrete subset V of X together with a number of relations specifying which points of V “belong together”. This can
be made more rigorous by means of some elementary concepts from graph theory, which we now review.

A graph is a pair of sets (V, E) such that E is a subset of V × V . In contrast to what is usually assumed in graph
theory, we will allow V and E to be (countably) infinite. The elements of V are called vertices, while those of E are
called edges. Note that the edges in E are undirected.

A graph is simple if there is at most one edge connecting each pair of distinct vertices. In this case, let us represent
an edge e ∈ E by its incident vertices as e  {x, y}. A path between two vertices x and y is a sequence of edges
{x, p1}, {p1, p2}, . . . , {pl , y}. A graph is said to be connected if there exists a path between any two vertices. In the
sequel, we will only consider connected, simple graphs, with the additional condition that there are no “loops”, i.e. no
edges e whose incident vertices coincide.

A planar graph is a graph (V, E) where V is a subset of R2 and the edges are curves in E connecting pairs of
vertices such that if any two edges intersect, they do so in a common vertex. For a planar graph, there is a notion of
face, defined as follows. Consider the geometric realization |E | of (V, E), which is just the union of all edges. The
complement R2

\ |E | of |E | is a disconnected set, whose connected components are the faces of the planar graph
(V, E). A face is therefore a region in the plane, bounded by a number of edges.

The degree of a face is defined as the number of edges that make up the boundary of that face. Dually, the degree
of a vertex is defined as the number of edges arriving in that vertex.

Definition 2. A mesh in X = R2 is a simple and connected planar graph (V, E) in X such that the following
conditions are satisfied:

(1) the edges are realized as segments of straight lines in R2;
(2) the degree of the faces is constant and equal to some natural number k > 2;
(3) the degree of the vertices is always larger than two.

It has to be stressed that the nature of this graph is left entirely unspecified and should be dictated by the problem
under scrutiny. Throughout this text, we will illustrate our theory from time to time using some elementary meshes,
of which the covering of R2 by quadrangles, as in Fig. 1, is the most straightforward. This mesh was also used in [6].

A few remarks concerning the above definition are in order. The fact that, given a mesh (V, E), the elements of
E are realized as straight line segments, implies that each edge is determined by its begin and end vertex. Similarly,
a face f is determined by its k bounding edges e1, . . . , ek , each of which can be represented as a pair of vertices
ei = {xi , xi+1} (where xk+1 = x1), and, hence, f is determined by specifying the set of its “corner” vertices:

f  {x1, . . . , xk}.

The set of all faces associated to a mesh (V, E) will be denoted by F . One can envisage a more general situation in
which the edges are allowed to be more general curves.
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Remark 3. In a recent paper [24] on lattice gauge theories, the author introduces a discretization of space-time by
means of a hypothetical “n-graph” structure, which is a list of data X0, X1, X2, . . ., where X0 is a set of vertices, X1
a set of edges, and so on, with sets X i of higher-dimensional objects. These sets have to specify various incidence
relations, the nature of which is still not entirely clear. However, the concepts of n-graphs or n-complexes (weaker
versions of n-graphs) would be useful in generalizing our theory to the case where the base space is no longer two-
dimensional or Euclidean. �

3.2.2. The local groupoid E
In order to bring to the fore the algebraic character of the set of edges E of a given mesh (V, E), we construct a

new set E ′, whose elements are ordered pairs (x, y) ∈ V × V satisfying the following axioms:

(1) (x, x) ∈ E ′ for all x ∈ V ;
(2) if {x, y} is an element of E , then (x, y) ∈ E ′ and (y, x) ∈ E ′.

The important difference between E and E ′ is that the elements of E are undirected edges, whereas the elements
of E ′ are directed. As we will no longer have a use for E , no confusion can arise if we, henceforth, denote E ′ simply
by E .

If we define the source and target mappings αX , βX : E → V in the usual way as αX (x, y) = x and βX (x, y) = y,
then E is a subset of the pair groupoid V ×V , satisfying all but one of the axioms of a discrete groupoid: if e1 = (x, y)
and e2 = (y, z) are elements of E such that βX (e1) = αX (e2), then the multiplication e1 ·e2, defined as e1 ·e2 = (x, z),
is an element of V × V but not necessarily of E .

This is strongly reminiscent of the concept of local groupoid introduced by Van Est in [25] in the context of Lie
groupoids as, roughly speaking, differentiable groupoids in which the condition β(e1) = α(e2) is necessary but not
sufficient for the product e1 · e2 to exist. Even though in its original definition this concept makes no sense for discrete
spaces, the name is nevertheless quite appropriate and so we will continue to refer to E as a local groupoid.

3.2.3. The set of k-gons Xk

We now introduce the set of k-gons Xk . The elements of this set are the faces of the mesh, but with a consistent
orientation. Indeed, the natural orientation of X = R2 allows us to write down the edges of each face f in (say)
counterclockwise direction:

f = (xk, x1), (x1, x2), . . . , (xk−1, xk).

We now introduce Xk as the set of all faces, considered as k-tuples of edges written down in the counterclockwise
direction:

Xk
= {((xk, x1), (x1, x2), . . . , (xk−1, xk)) where {x1, . . . , xk} ∈ F} .

We will also refer to the elements of Xk as k-gons and denote them as [x] := ((xk, x1), (x1, x2), . . . , (xk−1, xk)). To
refer to the i th component of a k-gon [x], we will use the subscript notation: [x]1 = (xk, x1) and [x]i = (xi−1, xi ) for
i = 2, . . . , k. In the following, we will assume that the indices are defined “modulo k, plus one”, which allows us to
write [x]i = (xi−1, xi ), for all i = 1, . . . , k.

It is useful to note that a k-gon is not changed by a cyclic permutation of its elements and that the common edge of
two adjacent k-gons is traversed in opposite directions.

Example 4. In the example given in Fig. 1, the degree of each face is exactly four as each face is made up of four
edges. The elements of X4 are the faces with the counterclockwise orientation indicated on the figure.

3.3. The discrete jet space Gk

We now complete our programme of discretizing the jet bundle of π by constructing over the fibre Q a structure
Gk similar to Xk . The elements of Gk are k-gons in G, each of which is an approximation of a frame by k groupoid
elements.
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Definition 5. The discrete jet bundle is the manifold Gk consisting of all ordered k-tuples (g1, . . . , gk) ∈ G ×· · ·×G
such that

(g1, g2), (g2, g3), . . . , (gk, g1) ∈ G2 and g1 · g2 · · · gk = α(g1)(= β(gk)).

Elements of Gk will be denoted as [g] = (g1, . . . , gk), and, with the “modulo” convention introduced above, a
subscript will be used to refer to the individual components: [g]i = gi . Note that, whereas Xk is a discrete set due to
its compatibility with the mesh, Gk is a smooth manifold and dim Gk

≥ dim G.
The discrete jet bundle Gk can be equipped with the following two operations:

(1) the inverse of a given k-gon [g], denoted as [g]
−1 and defined as

[g]
−1

= (g−1
k , g−1

k−1, . . . , g−1
1 );

(2) a collection of k mappings α(i) : Gk
→ Q, called generalized source maps and defined as α(i)([g]) = α(gi ).

3.4. Discrete fields

The idea of a “discrete field” can be expressed in terms of a mapping that associates to each edge (i.e. to each
element of the set E , in the extended sense of Section 3.2.2) an element of the groupoid G, and to each vertex in V a
unit of G, such that whenever two edges are composable, so are their images.

Definition 6. A discrete field is a pair φ = (φ(0), φ(1)), where φ(0) is a map from V to Q and φ(1) is a map from E to
G such that

(1) α(φ(1)(x, y)) = φ(0)(x) and β(φ(1)(x, y)) = φ(0)(y);
(2) for each (x, y) ∈ E , φ(1)(y, x) = [φ(1)(x, y)]−1;
(3) for all x ∈ V , φ(1)(x, x) = φ(0)(x).

The definition we have given here is strongly reminiscent of that of a groupoid morphism. Of course E is not a
proper groupoid but just a subset of V × V . However, a discrete field can easily be extended to a groupoid morphism
from V × V into G, as we now show.

Proposition 7. Let φ = (φ(0), φ(1)) be a discrete field. Then there exists a unique groupoid morphism (ϕ, f ) :

V × V → G extending φ.

Proof. First of all, we define f (x) := φ(0)(x) ∈ Q. Now, let (x, y) be any element of V × V . If (x, y) ∈ E , then we
put ϕ(x, y) := φ(1)(x, y). If (x, y) 6∈ E , then, because of the connectivity of the mesh (see Definition 2), there exists
a sequence (x, u1), (u1, u2), . . . , (ul , y) in E such that in the pair groupoid V × V ,

(x, y) = (x, u1) · (u1, u2) · · · (ul , y). (5)

We now put ϕ(x, y) = φ(x, u1) · φ(u1, u2) · · ·φ(ul , y). As each factor on the right-hand side is composable with the
next (see property (1) in Definition 6), this multiplication is well defined. We only have to prove that ϕ(x, y) does not
depend on the sequence used in (5). Therefore, consider any other decomposition of (x, y) as a product in V × V of
elements of E , i.e.

(x, y) = (x, u′

1) · (u′

1, u′

2) · · · (u
′
m, y). (6)

and form the product

(x, x) = (x, u1) · (u1, u2) · · · (ul , y) · (y, u′
m) · (u′

m, u′

m−1) · · · (u
′

1, x).

By acting on both sides with ϕ, we obtain

f (x) = ϕ(x, u1) · · ·ϕ(ul , y) · [ϕ(u′
m, y)]−1

· · · [ϕ(x, u′

1)]
−1

and therefore

f (x)ϕ(x, u′

1) · · ·ϕ(u
′
m, y) = ϕ(x, u1) · · ·ϕ(ul , y).

By noting that f (x) = α(ϕ(x, u′

1)), a left-sided unit, we obtain the desired path independence.
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Fig. 2. A discrete field φ and its associated mapping ψ : Xk
→ Gk .

To prove that (ϕ, f ) is unique, we consider a second groupoid morphism (ϕ′, f ′) extending φ, i.e. such that

ϕ′(x, y) = ϕ(x, y) = φ(x, y) for (x, y) ∈ E .

Then, let (x, y) be an arbitrary element of V × V . By writing (x, y) as a sequence of elements in E as in (6), and
applying ϕ′ to this product, we may conclude that ϕ′ coincides with ϕ on the whole of V × V . �

Remark 8.2 The preceding proposition makes clear why property (3) of Definition 6 cannot be omitted. Indeed,
consider the Lie group G = GL(2,R), and let (φ(0), φ(1)) be the pair of constant maps defined as

φ(0)(x) =

(
1 0
0 1

)
and φ(1)(x, y) =

(
0 1
1 0

)
.

The pair (φ(0), φ(1)) satisfies the requirements of Definition 6 except for property (3), but cannot be extended to a
groupoid morphism.

Henceforth, we will also write φ for the unique morphism extending a given discrete field φ = (φ(0), φ(1)).
From a physical point of view, we are led to consider the mesh (V, E) in X and hence the local groupoid E , and

we define a discrete field to attach a groupoid element to each element of E . From a mathematical point of view, it
makes more sense to work with the pair groupoid V ×V because, as a groupoid, it has a richer structure. Proposition 7
allows us to tie up both aspects by showing that they are equivalent.

It now remains to make the link between discrete fields, or morphisms of groupoids, on the one hand, and mappings
from Xk to Gk on the other hand. It is straightforward to see that a morphism φ : V × V → G induces a map
ψ : Xk

→ Gk by putting

ψ([x]) = (φ([x]1), . . . , φ([x]k)) (7)

(see also Fig. 2). The map ψ has some properties reminiscent of those of groupoid morphisms. Of particular
importance is the following:
Morphism property: if [x] and [y] are elements of Xk having an edge in common, then the images of [x] and [y]

under ψ have the corresponding edge in Gk in common. Explicitly:

[x]l = ([y]m)
−1 implies that ψ([x])l = (ψ([y])m)

−1. (8)

Proposition 9. There is a one-to-one correspondence between groupoid morphisms φ : V × V → G and mappings
ψ : Xk

→ Gk satisfying the morphism property.

Proof. We have already associated with a groupoid morphism φ a map ψ satisfying the morphism property. To prove
the converse, let ψ : Xk

→ Gk be a map satisfying the morphism property. Define first φ : E → G as follows.

(1) For (u, u) ∈ E , we take a k-gon [x] having u as its lth vertex: u = αX ([x]l) and we put

φ(u, u) = α(l)(ψ([x])).

2 We are grateful to R. Benito and D. Martı́n de Diego for pointing out to us this example, as well as the absence of property (3) from Definition 6
in an earlier version of this paper.
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Fig. 3. A vertex of degree four.

It is straightforward but rather tedious to show that this expression does not depend on the choice of [x]. Let [y]

be another k-gon, with u as its mth vertex. Let us assume for the sake of simplicity that u has degree four (the
general case can be dealt with by repeated application of this special case). Then the edges that emerge from u are
[x]l and [y]m , as well as ([x]l−1)

−1 and ([y]m−1)
−1 (see Fig. 3) and there exists exactly one k-gon [z] such that

[z]n = ([x]l)
−1 and [z]n+1 = ([y]m−1)

−1.

By definition, we have that β(ψ([z])n) = α(ψ([z])n+1) and β(ψ([y])m−1) = α(ψ([y])m). On the other hand, the
morphism property ensures that

ψ([x])l = (ψ([z])n)
−1 and ψ([y])m−1 = (ψ([z])n+1)

−1.

By applying α to the left equality and β to the right equality, we finally obtain that

α(l)(ψ([x])) = α(m)(ψ([y])),

which shows that φ(u, u) does not depend on [x].
(2) For (u, v) ∈ E , u 6= v, we take [x] in Xk such that (u, v) = [x]l and we put

φ(u, v) = ψ([x])l .

This is well defined because of the morphism property and, moreover, φ satisfies φ(y, x) = (φ(x, y))−1.

By applying Proposition 7 we obtain the desired morphism φ : V × V → G. �

Note that we can still view the developments in the preceding sections as follows. First, the frame bundle of X
was discretized by considering the set of k-gons Xk . Secondly, the jet bundle was discretized by essentially the same
procedure: as a jet in the continuous case can be identified with a “horizontal” subspace, we discretized the jet bundle
of π by approximating jets by k-gons in G. Finally, we introduced discrete fields as groupoid morphisms from V × V
to G, or, equivalently, mappings from Xk to Gk satisfying the morphism property. This property can be seen as the
discrete analogue of a section of J 1π being holonomic.

Remark 10. It is perhaps useful to illustrate the theory developed so far by applying it to groupoid mechanics. In this
case, the base space X is R, but all of the constructions for X = R2 carry through to this case. As a discretization of
R, we choose the canonical injection i : Z ↪→ R. A discrete field can then be identified with a bi-infinite sequence of
pairwise composable groupoid elements . . . , g−2, g−1, g0, g1, . . ., which is precisely the definition of an admissible
sequence in [3,2]. �

3.5. The prolongation PkG

We recall that the discrete jet bundle Gk is equipped with k generalized source maps defined as α(i)([g]) = α([g]i ).
By use of these maps, we define the prolongation PkG of Gk through the following commutative diagram:

PkG //

��

AG × · · · × AG

��
Gk // Q × · · · × Q
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Hence, PkG consists of elements ([g]; v1, . . . , vk), where vi ∈ Aα(gi )G for each i = 1, . . . , k. We denote by
π (k) : PkG → Gk the projection which maps ([g]; v1, . . . , vk) onto [g]. Furthermore, there exist k bundle morphisms
(P(i), p(i)) : PkG → PG, defined as follows. The base space map p(i) : Gk

→ G is the projection onto the i th
factor, p(i)([g]) = [g]i , and the total space map P(i) is defined as

P(i)([g]; v1, . . . , vk) = (gi ; vi , vi+1).

The definition of PkG is strongly reminiscent of that of the prolongation of a Lie groupoid over a fibration (see
Section 2.4), although in general Gk is not a groupoid. The exact nature of PkG is unclear at this stage, but we will
show (see Theorem 14) that the algebroid structure of PG can be used to equip PkG with a Lie algebroid structure
by demanding that the maps (P(i), p(i)) are Lie algebroid morphisms.

Remark 11. For k = 2, the manifold G2 is diffeomorphic to G, with the diffeomorphism ϕ mapping each pair
(g, g−1) onto g. Note that p(1) = ϕ. In addition, we have that

α(1) = α ◦ ϕ and α(2) = β ◦ ϕ,

confirming our intuition that the maps α(i) are some sort of “generalized source maps”. Furthermore, the projection
P(1) is given by

P(1)(g, g−1
; uα(g), vβ(g)) = (g; uα(g), vβ(g)),

and so in fact it is just the natural identification of P2G with PG. On the other hand, P(2) is given by

P(2)(g, g−1
; uα(g), vβ(g)) = (g−1

; vβ(g), uα(g)).

We recalled in Section 2.4 that PG is a groupoid over AG in a natural way. A brief comparison shows that P(2) is
just the inversion mapping of PG, once we use P(1) to identify PG and P2G. �

3.5.1. The injection I : PkG ↪→ T Gk

Of central importance for the following developments is the fact that there exists a bundle injection I of PkG into
T Gk . In order to define I, we recall that a section v of the Lie algebroid AG defines on G a left-invariant vector
field vL and a right-invariant vector field vR (see expression (1)). We also recall that we use the same notation for the
pointwise operation (see Remark 1).

Now, let ([g]; v1, . . . , vk) be any element of PkG, and define I([g]; v1, . . . , vk) ∈ T[g]Gk as

I([g]; v1, . . . , vk) = (vR
1 (g1)+ vL

2 (g1), v
R
2 (g2)+ vL

3 (g2), . . . , v
R
k (gk)+ vL

1 (gk)).

To prove that the right-hand side is a tangent vector to Gk at [g], we take for each i = 1, . . . , k a curve
t 7→ hi (t) ∈ Fα(gi ) in the α-fibre through gi such that hi (0) = α(gi ) and ḣi (0) = vi . Then the vector on the
right-hand side is the tangent vector at 0 to the following curve in Gk :

t 7→

(
h−1

1 (t)g1h2(t), h−1
2 (t)g2h3(t), . . . , h−1

k (t)gkh1(t)
)
.

Definition 12. Let [g] be an element of Gk . The i th tangent lift is the map L(i)
[g]

: Aα(gi )G → T[g]Gk defined as

L(i)
[g]
(v) = I([g]; 0, . . . , 0, v, 0, . . . , 0) for v ∈ Aα(gi )G,

where v occupies the i th position among the arguments of I([g]; . . .). We will frequently use the notation v(i)
[g]

for the

element L(i)
[g]
(v).

Remark 13. We pointed out that P2G is isomorphic to PG. In this case, the injection I is given by

I : (g; uα(g), vβ(g)) 7→ T (rg ◦ i)(uα(g))+ T lg(vβ(g)) ∈ Vgβ ⊕ Vgα,

and coincides with the isomorphism Θ : PG → Vβ ⊕ Vα (see Section 2.4). In this case, the map I can also be
seen as the anchor of the Lie algebroid PG. This theme will return in the next section, when we endow PkG with the
structure of a Lie algebroid, with I as its anchor map. �
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3.5.2. The Lie algebroid structure on π (k) : PkG → Gk

In order to endow PkG with the structure of a Lie algebroid, we introduce the concept of the lift of a section of
PG to PkG, not to be confused with the tangent lift of Definition 12 (In fact, the lift operation defined here will be
used only in this section).

We recall that a pair of sections u, v of AG induces a section X of PG → G according to X (g) = (g; uα(g), vβ(g)).
The Lie bracket on PG is completely determined by its action on sections of this form (see Section 2.4.1). We now
define the i th lift of X as the section X(i) of PkG constructed as follows:

X(i)([g]) = ([g]; 0, . . . , 0, uα(gi )︸ ︷︷ ︸
i

, vα(gi+1)︸ ︷︷ ︸
i+1

, 0, . . . , 0) for [g] ∈ Gk . (9)

We will show that PkG can be equipped with the structure of a Lie algebroid over Gk , and that its Lie bracket is
completely determined by its action on sections X(i) of the form (9).

Theorem 14. There exists a unique Lie algebroid structure on π (k) : PkG → Gk such that each projection map
P(i) : PkG → PG is a morphism of Lie algebroids. This Lie algebroid structure is characterized by

(1) the anchor ρ(k) : PkG → T Gk coincides with the injection I defined in Section 3.5.1;
(2) for X, Y ∈ Sec(AG) and X(i), Y(i) the corresponding ith lifts, the bracket of X(i) and Y(i) is determined by

P(i) ◦ [X(i), Y(i)] = [X, Y ] ◦ p(i). (10)

We denote the associated exterior differential on
∧
(PkG)∗ by d(k).

Proof. As all of the projection mappings (P(i), p(i)) are Lie algebroid morphisms, the anchor ρ(k) of PkG satisfies

ρ̂ ◦ P(i) = T p(i) ◦ ρ(k),

where ρ̂ : PG → T G is the anchor of PG (see Section 2.4.1). Hence, the i th component of ρ(k)([g]; v1, . . . , vk) is
just ρ(gi ; vi , vi+1), which is equal to vR

i (gi )+ vL
i+1(gi ). We conclude that ρ(k) is precisely the injection I.

The i th lift X(i) of X satisfies

P(i) ◦ X(i) = X ◦ p(i) (11)

and the bracket of X(i) and Y(i) is therefore given by the corresponding expression in (10). This follows from [15,
def. 1.3] by noting that (11) is the P(i)-decomposition of X(i). It is easy to see that the bracket of two i th lifts is
uniquely determined by (10). That the bracket of two arbitrary sections of π (k) is also determined by this expression,
is a consequence of the fact that one may lift a basis {eα} of sections of PG to yield a basis {(eα)(i)} of sections of
π (k). �

4. Lagrangian field theories

After the discussion in the previous sections of the geometrical background for our treatment of discrete field
theories, we now turn to the fields themselves, as well as the equations that govern their behaviour. These equations
will turn out to be (implicit or explicit) difference equations.

The key element in constructing these discrete field equations is the specification of a discrete Lagrangian, i.e. a
smooth function L on Gk . Associated to such a discrete Lagrangian is an action sum — the discrete counterpart of the
action integral in continuous field theory. As we will see, the discrete field equations arise by extremizing (in some
suitable sense) this action sum.

Before deriving the discrete field equations, we will first construct some intrinsic objects on the prolongation
bundle π (k) : PkG → Gk and we will argue that all of these objects have a natural counterpart in continuous field
theories. These include, among other things, the Poincaré–Cartan forms and the induced Legendre transformations.
In Section 5, we will make the link with [6] when we turn our attention to an important special case: that of the pair
groupoid G = Q × Q.
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4.1. The Poincaré–Cartan forms

Let L : Gk
→ R be a discrete Lagrangian. To L one can associate k sections θ (i)L of (π (k))∗ : (PkG)∗ → Gk ,

called Poincaré–Cartan forms, which are defined as follows:

θ
(i)
L ([g]; v1, . . . , vk) = (v

(i)
i )[g](L),

where vi ∈ Aα(gi )G and v(i)i is the i th tangent lift of vi to Gk (cf. Definition 12). As
∑
v
(i)
i = I([g]; v1, . . . , vk), we

may conclude that

d(k)L =

k∑
i=1

θ
(i)
L .

Remark 15. In the case k = 2, it follows from Remark 13 that θ (1)L (resp. θ (2)L ) can be identified with the
Poincaré–Cartan forms θ−

L (resp. θ+

L ) defined in [3] as

θ−

L (g; uα(g), vβ(g)) = dL(g)(u R(g)) and θ+

L (g; uα(g), vβ(g)) = dL(g)(vL(g)).

Indeed, let us consider the function Lmech on G given by Lmech = ϕ∗L , where ϕ : G2
→ G is the diffeomorphism

introduced in Remark 11, or, explicitely, Lmech(g) = L(g, g−1). Then, by definition,

θ
(1)
L (g, g−1

; uα(g), vβ(g)) =
d
dt

L(h−1(t)g, g−1h(t))

∣∣∣∣
0
,

where h(t) ∈ Fα(g) is such that h(0) = α(g) and ḣ(0) = uα(g). The right-hand side can now be rewritten as

d
dt

Lmech (h
−1(t)g)

∣∣∣
0

=
〈
dLmech, T (rg ◦ i)(uα(g))

〉
= θ−

L (g; uα(g), vβ(g)).

There is a similar identification of θ (2)L with θ+

Lmech
. �

4.2. The field equations

We now proceed to derive the discrete field equations for a Lie groupoid morphism φ : V × V → G by varying a
discrete action sum. Let L : Gk

→ R be a discrete Lagrangian and define the action sum as

S(φ) =

∑
[x]∈Xk

L(ψ([x])), (12)

where ψ is the map from Xk to Gk associated to the morphism φ (see Proposition 9). Strictly speaking, one should
take care to ensure that this summation is finite by restricting to morphisms φ whose domain of definition U ⊂ V × V
only contains a finite number of edges.

4.2.1. Variations
In this section, we define the concept of a variation, both finite and infinitesimal. A key property is that the variation

of a groupoid morphism yields a new groupoid morphism. In order to formalize this, we introduce the concept of
morphism properties for mappings from Gk onto itself. These properties are very similar to the morphism property
introduced in (8).

Let us introduce a slight modification of the source mappings α(i):

α̂(i) : Gk
→ Gk, α̂(i)([g]) = (α([g]i ), . . . , α([g]i )).

It is obvious that for any l ≤ k,
(
α̂(i)([g])

)
l = α(i)([g]).

Definition 16. A map Ψ : Gk
→ Gk is said to satisfy the morphism properties if, for all [g], [h] ∈ Gk ,

(I) Ψ ◦ α̂(i) = α̂(i) ◦ Ψ for i = 1, . . . , k;
(II) if [g]l = [h]m , then Ψ([g])l = Ψ([h])m .
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Proposition 17. There is a one-to-one correspondence between groupoid morphisms Φ : G → G and mappings
Ψ : Gk

→ Gk satisfying the morphism properties.

Proof. Let Φ be a morphism from G to itself. As in (7), Φ induces a mapping Ψ : Gk
→ Gk satisfying the morphism

properties, namely:

Ψ([g]) = (Φ([g]1), . . . ,Φ([g]k)) .

Conversely, let Ψ : Gk
→ Gk be a mapping satisfying the morphism properties and let g be any element of G. In

order to define Φ(g), we take any [η] ∈ Gk such that there exists a natural number l ≤ k for which g = [η]l . We then
put

Φ(g) := Ψ([η])l .

Morphism Property (II) ensures that Φ(g) depends only on g and not on the other components of [η]. We now have
to check that Φ is a morphism of G to itself.

(1) In order to prove that α ◦ Φ = Φ ◦ α, we take any g ∈ G and consider [η] ∈ Gk such that [η]l = g. Then
α(Φ(g)) = α(Ψ([η])l) = α(l)(Ψ([η])).

However, because of morphism Property (I) we have

α̂(l)(Ψ([η])) = Ψ(α̂(l)([η])) = Ψ((α(g), . . . , α(g))). (13)

For any arbitrary m ≤ k, we have that Φ(α(g)) = Ψ ((α(g), . . . , α(g)))m , and so, by considering the mth
component of (13),

Φ(α(g)) = (α̂(l) (Ψ([η])))m
= α(l)(Ψ([η])),

from which we conclude that α(Φ(g)) = Φ(α(g)) for all g ∈ G. A similar argument can be used to show that Φ
commutes with β.

(2) We now show that Φ(g−1) = Φ(g)−1 for any g ∈ G. Let

[ξ ] = (g, g−1, α(g), . . . , α(g)),

then Ψ([ξ ])1 = Φ(g), Ψ([ξ ])2 = Φ(g−1) and Ψ([ξ ]) j = Φ(α(g)) for j = 3, . . . , k. Moreover, since
Ψ([ξ ]) ∈ Gk , we have, by definition of Gk , that Ψ([ξ ])1 · · ·Ψ([ξ ])k = α(Ψ([ξ ])1), or

Φ(g)Φ(g−1)Φ(α(g)) · · ·Φ(α(g)) = α(Φ(g)),

which, after simplification, leads to Φ(g−1) = Φ(g)−1.
(3) Finally, we have to show that if (g, h) is a composable pair, i.e. β(g) = α(h), then (Φ(g),Φ(h)) is also

composable, and moreover, Φ(gh) = Φ(g)Φ(h). The proof of this property is similar to the proof of the previous
property.

Consider the following k-gon:

[η] = (g, h, (gh)−1, α(g), . . . , α(g)).

Then, as Ψ([η]) ∈ Gk , we conclude that, first of all, β(Φ(g)) = α(Φ(h)), and secondly

Φ(g)Φ(h)Φ((gh)−1) = α (Φ(g)) .

By using the previous properties, as well as some of the standard properties of the groupoid G, we find that
Φ(gh) = Φ(g)Φ(h).

We conclude that Φ : G → G is a groupoid morphism. �

Corollary 18. Let Ψ : Gk
→ Gk be a map satisfying the morphism properties. Then for each [g] ∈ Gk ,

Ψ([g]
−1) = Ψ([g])−1.

Proof. This can be proved directly, or by noting that Ψ induces a groupoid morphism Φ such that

Ψ([g]) = (Φ([g]1), . . . ,Φ([g]k)) ,

and writing out the definition of [g]
−1 and Ψ([g])−1. �
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After these introductory lemmas, we now turn to the concepts of finite and infinitesimal variations of a morphism
φ : V × V → G. Before doing so, we remark that any subset Û of Xk uniquely determines a subset U of V × V ,
consisting of all the edges of all faces contained in Û . We then define the boundary ∂U ⊂ V × V to be the following
set:

∂U := {(u, v) ∈ V × V : ∃[x], [y] ∈ Xk such that [x]l = (u, v), [y]m = (v, u) and [x] ∈ Û , [y] 6∈ Û }.

In other words, the boundary ∂U consists of edges that, when traversed in opposite directions, are part of two k-gons
[x] and [y], one of which is contained in Û , while the other one is not.

Definition 19. A finite variation over Û ⊂ Xk of a morphism φ : V × V → G, with associated mapping
ψ : Xk

→ Gk , is a map Ψ : R × ψ(Û ) → ψ(Û ) such that for each fixed t ∈ R, Ψt := Ψ(t, ·) satisfies the
morphism properties, and which has the following form: for each [g] ∈ ψ(Û ) there exist maps hi : R → G such that

Ψt ([g]) := Ψ(t, [g]) = (h1(t)
−1g1h2(t), h2(t)

−1g2h3(t), . . . , hk(t)
−1gkh1(t)), (14)

where hi (0) = α(gi ) and hi (t) ∈ Fα(gi ). In addition, if [g]l ∈ φ(∂U ), then hl(t) = α([g]l) and hl+1(t) = β([g]l)

for all t ∈ R.

Note that Ψt doesn’t have to be defined on the whole on Gk , but only on the image of Û under ψ . Note furthermore
that Ψ0 is the identity mapping on ψ(Û ), since each of the curves hi : R → G in (14) satisfies hi (0) = α(gi ).

Remark 20. It should be emphasized that in (14), each of the curves hi : R → Fα(gi ) depends only on α(gi ), and
not on the whole of [g] as might be expected. In order to prove this, consider the morphism Φt associated to the
variation Ψt and let g, g′ be elements of G such that β(g) = α(g′). Then

Φt (g) = h(t)−1gk(t) and Φt (g
′) = h′(t)−1g′k′(t),

which makes it clear that h(t), k(t) can only depend on g, and h′(t), k′(t) only on g′. However, as (g, g′) is a
composable pair, so is their image under Φt and therefore h′(t) = k(t). We conclude that k(t) cannot depend on
g itself but only on α(g). For the variation (14), a similar argument implies that each hi only depends on α(gi ). �

Remark 21. Let [x], [y] ∈ Xk be two k-gons that have an edge in common, e.g. [x]l = [y]
−1
m for l,m ≤ k. Consider

now their images under the mapping ψ associated to a morphism φ : V × V → G, namely [η] = φ([x]) and
[ξ ] = φ([y]). Because of the morphism property, we conclude that [η]l = [ξ ]−1

m . Moreover, ([η]l−1, [ξ ]m+1) is a
composable pair, as is ([ξ ]m−1, [η]l+1). Let Ψ be a variation of φ; it is interesting to compare its action on [η] and
[ξ ]. Putting

Ψt ([η]) = (. . . , hl−1(t)
−1ηl−1hl(t), hl(t)

−1ηlhl+1(t), hl+1(t)
−1ηl+1hl+2(t), . . .),

where we denote [η]i simply by ηi , i = 1, . . . , k, the morphism properties that Ψt has to satisfy, allow us to conclude
that the variation of [ξ ] is given by the form

Ψt ([ξ ]) = (. . . , km−1(t)
−1ξm−1hl+1(t), hl+1(t)

−1ξmhl(t), hl(t)
−1ξm+1km+2(t), . . .).

The important thing to note is that a composable pair, for example ([η]l−1, [ξ ]m+1), is mapped to another composable
pair, in this case (Ψt ([η])l−1,Ψt ([ξ ])m+1). �

In conclusion, although Definition 19 might seem quite involved at first, it has nevertheless a clear geometric
interpretation. Indeed, each edge g in the image of U under the discrete field φ is varied according to the following
prescription: there exist curves h(t) and k(t) in Fα(g), with h(0) = k(0) = α(g) such that the variation of g can be
expressed as

g 7→ h(t)−1gk(t).

The edges of the boundary ∂U are not varied. Imposing the morphism condition on Ψt ensures us that each edge is
varied in a uniquely determined way, and moreover, composable edges (i.e. having a vertex in common) are mapped
to composable edges. We have sketched the effect of a finite variation on a discrete field in Fig. 4.
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Fig. 4. A variation of a discrete field (boundary not shown).

Definition 22. An infinitesimal variation over Û ⊂ Xk of a morphism φ : V × V → G is a section Γ of π (k), defined
on ψ(Û ), such that

(1) [g]l = [h]m implies that Γ ([g])l = Γ ([h])m ;
(2) [g]l ∈ φ(∂U ) implies that Γ ([g])l = 0,

(with the convention that for Γ ([g]) = ([g]; v1, . . . , vk), Γ ([g])l = vl ).

In this definition, the first property ensures that Γ attributes a unique Lie algebroid element to each edge, whereas
the second property expresses the fact that Γ is zero on the image of ∂U under φ. We may therefore conclude that,
because of the additional conditions in Definition 22, an infinitesimal variation can also be interpreted as a section of
PG → G defined on φ(U ), or equivalently, a section of φ∗ PG which is zero on ∂U .

The infinitesimal variation Γ associated to a finite variation Ψt is generated as follows. For [g] ∈ ψ(Û ), consider
the curves hi : R → G (cf. Definition 19) and put

Γ ([g]) = ([g]; v1, . . . , vk), where vi = ḣi (0).

The infinitesimal variation Γ will satisfy the required conditions since Φt has the morphism properties and leaves the
image of ∂U invariant.

Conversely, we may “integrate” an infinitesimal variation Γ to yield a finite variation. Let γ be the section of
PG associated to Γ , which can be written as γ (g) = (g; uα(g), vβ(g)), where uα(g) ∈ Aα(g)G and vβ(g) ∈ Aβ(g)G.
Consider now the left- and right-invariant vector fields uL and vR , defined as uL(g) = (uα(g))L(g), and vR

=

(vβ(g))
R(g). Let θ : R × G → G the flow of uL , and ϕ the flow of vR . We then define a morphism Φt : G → G by

putting Φt (g) = ϕt (g)gθt (g). It is easy to check that this composition is well defined. Now, the morphism Φt induces
a finite variation in the sense of Definition 19 and by construction the associated infinitesimal variation is equal to the
original section Γ .

4.2.2. The field equations
For the sake of clarity, we will derive the field equations in the case where X (=R2) is covered by a quadrangular

mesh as in Fig. 1. This is also one of the cases covered in [6]. The generalization of the field equations to non-regular
meshes is straightforward but involves a lot of notational intricacies.

Let φ : V × V → G be a discrete field, with associated mapping ψ : Xk
→ Gk . Consider a finite subset Û of Xk

with its induced set U ⊂ V × V , and let Ψt be a finite variation (according to Definition 19) over Û of φ. We denote
the composition Ψt ◦ψ as ψt . Because Ψt satisfies the morphism properties, ψt induces in turn a groupoid morphism
φt : V × V → G. Note that φ0 = φ.

We now express that the (restricted) morphism φ : (V × V ) ∩ U → G extremizes the action sum (12), i.e.

d
dt

S(φt )

∣∣∣∣
t=0

= 0 (15)

for an arbitrary variation Ψt .
Let u be a vertex in V ; naturally, u is a common vertex of four quadrangles, denoted by [x], [x̂], [x̃] and [x̌]. Let us

denote by [g], [ĝ], [g̃] and [ǧ] their corresponding images under ψ (see Fig. 5 for a schematic representation of these
four quadrangles). We will focus on the variation of the image of the center vertex u.
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Fig. 5. Schematic representation of [g], [ĝ], [g̃], and [ǧ].

The variation Ψt will map [g] into a new quadrangle [g′
] of the following form:

[g′
] = (h−1

1 (t)g1h2(t), h−1
2 (t)g2h3(t), h−1

3 (t)g3h4(t), h−1
4 (t)g4h1(t)), (16)

and likewise for [ĝ], [g̃] and [ǧ]. However, the latter three each have a vertex in common with [g], and because of
morphism Property (II), their variations will be related, as we pointed out in Remark 21. More precisely, let us focus
on the effects of h3(t): the terms in the action sum involving h3(t) are spelled out below:

S(φt ) = · · · +L(h−1
1 (t)g1h2(t), h−1

2 (t)g2h3(t), h−1
3 (t)g3h4(t), h−1

4 (t)g4h1(t))

+ L(h2(t)ĝ1k1(t), k−1
1 (t)ĝ2k3(t), k−1

3 (t)ĝ3h3(t), h−1
3 (t)g4h2(t))

+ L(h−1
3 (t)g̃1k3(t), k−1

3 (t)g̃2l3(t), l
−1
3 (t)g̃3l4(t), l

−1
4 (t)g̃4h3(t))

+ L(h−1
4 (t)ǧ1h3(t), h−1

3 (t)ǧ2l4(t), l
−1
4 (t)ǧ3m4(t),m−1

4 (t)ǧ4h4(t)),

where h1(t), h2(t), h3(t), h4(t) as well as k2(t), k3(t), l3(t), l4(t) and m4(t) are determined as in Definition 19.
It is helpful to keep in mind the following relations:

g2 = ĝ−1
4 , ĝ3 = g̃−1

1 g̃4 = ǧ−1
2 and ǧ1 = g−1

3 ,

expressing the fact that each of the four k-gons [g], [ĝ], [g̃], [ǧ] has an edge in common with two of the other k-gons.
By demanding that S be stationary, we obtain

v
(3)
[g]
(L)+ v

(4)
[ĝ]
(L)+ v

(1)
[g̃]
(L)+ v

(2)
[ǧ]
(L) = 0,

where v ∈ AG is given by v = ḣ3(0), and the superscript i denotes the i th tangent lift of an element of AG to T Gk

(see Definition 12).
In conclusion, we have the following characterization of extremals of the action sum (12).

Theorem 23. Let φ : V × V → G be a groupoid morphism. For any u ∈ V , consider the vertex α(g) = φ(u, u) and
let [g], [ĝ], [g̃] and [ǧ] be the four quadrangles having the vertex α(g) in common (as in Fig. 5).

Then φ is an extremum of the action sum (12) if and only if, for each such vertex α(g) with associated quadrangles
[g], [ĝ], [g̃] and [ǧ], and for each v ∈ Aα(g)G, the following holds:

v
(1)
[g̃]
(L)+ v

(2)
[ǧ]
(L)+ v

(3)
[g]
(L)+ v

(4)
[ĝ]
(L) = 0. (17)

We refer to the expressions in (17) as the discrete field equations. In the case where G is the pair groupoid, these
equations become (implicit or explicit) difference equations (see [6]). We will return to this case in Section 5.1.

4.3. The Legendre transformation

In this section, we introduce a notion of Legendre transformation and use it to show that the pullback of the
canonical section of a suitable dual bundle yields the Poincaré–Cartan forms constructed in Section 4.1. More
precisely, the Legendre transformation will be a collection of k bundle maps from PkG to the bundle Pτ

∗

(AG) →

A∗G. As sketched in Section 2.5.1, the dual of the latter is equipped with a canonical section θ and the pullback of
this section by each of the bundle maps corresponding to the Legendre transformation, will provide the full set of
Poincaré–Cartan forms.
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We first introduce the pullback bundles P(i)(AG), i = 1, . . . , k, constructed by means of the following
commutative diagram:

P(i)(AG)

��

// T Gk

Tα(i)

��
AG ρ

// T Q

The bundles P(i)(AG) bear the same relation to Gk as Pα(AG) and Pβ(AG) to G.

4.3.1. The mappings P(i)
: PkG → P(i)(AG)

For each i = 1, . . . , k, there is a natural injection ϕ(i) : G → Gk defined as

ϕ(i)(g) = (α(g), . . . , α(g), g, g−1, α(g), . . . , α(g))

where g and g−1 occupy the i th and the (i + 1)th position, respectively.
The projections P(i) : PkG → PG, as defined in Section 3.5, can be used to define projection mappings

P(i)
: PkG → P(i)(AG) by means of the composition

P(i)
: PkG P(i)

−→ PG
A(Φα)
−→ Pα(AG)

id×Tϕ(i)
−→ P(i)(AG),

where A(Φα) : PG → Pα(AG) was defined in Section 2.5.2.

Remark 24. For k = 2, we now show that the projections P(1) and P(2) can be identified with A(Φα) and A(Φβ),
respectively. We recall that P2G is isomorphic to PG and that there is a diffeomorphism ϕ : G2

→ G sending each
(g, g−1) to g (see Remark 11). Hence, ϕ(1) is just ϕ−1 and ϕ(2) equals ϕ−1

◦ i .
There is a natural identification of P(1)(AG) with Pα(AG), and of P(2)(AG) with Pβ(AG). Using these

identifications, it is straightforward to see that P(1) can be identified with A(Φα). The identification of P(2) with
A(Φβ) takes some more work. Consider first the composition

Pα(AG)
id×Tϕ(2)
−→ P(2)(AG) ∼= Pβ(AG),

which is easily seen to be equal to id × T i . We then obtain the following for the map P(2), considered as a map into
Pβ(AG):

((id × T i) ◦ A(Φα) ◦ P(2))(g, g−1
; uα(g), vβ(g)) = (id × T i ◦ A(Φα))(g−1

; vβ(g), uα(g))

= (id × T i)(vβ(g), T (rg−1 ◦ i)(vβ(g))+ T lg−1(uα(g)))

= (vβ(g), T (rg ◦ i)(uα(g))+ T lg(vβ(g)))

= A(Φβ)(g; uα(g), vβ(g)),

where we again refer to Section 2.5.2 for the definition of A(Φβ). �

4.3.2. Definition of the Legendre transformations
Given a Lagrangian L : Gk

→ R, there are k distinguished bundle maps (PFL(i),FL(i)) from PkG to the bundle
Pτ

∗

(AG) → A∗G, which we will call Legendre transformations.
For each i = 1, . . . , k, the base map FL(i) : Gk

→ A∗G is defined as follows. For each [g] ∈ Gk , FL(i)([g]) is
the element of A∗

α(gi )
G defined by

FL(i)([g])(vα(gi )) = v
(i)
α(gi )

(L) for all vα(gi ) ∈ Aα(gi )G.

Recall that v(i)α(gi )
is the i th tangent lift of vα(gi ) to T[g]Gk . The total space map PFL(i) : PkG → Pτ

∗

(AG) is defined

as the composition (id × T FL(i))× P(i).
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Proposition 25. Let θ be the canonical section of [Pτ
∗

(AG)]∗ → A∗G defined in Section 2.5.1. Then, for
i = 1, . . . , k,

(PFL(i),FL(i))?θ = θ
(i)
L .

Proof. Let ([g]; v1, . . . , vk) be an element of PkG and consider

[(PFL(i),FL(i))?θ ][g]([g]; v1, . . . , vk) = θFL(i)([g])(PFL(i)([g]; v1, . . . , vk)). (18)

Now, the canonical section θ is defined by the following rule: for α ∈ A∗G and (v, Xα) in (Pτ
∗

(AG))α , we have that
θα(v, Xα) = α(v). Noting that

PFL(i)([g]; v1, . . . , vk) = (vi , ·)

(the precise form of the second argument doesn’t matter), the right-hand side of (18) then becomes

FL(i)([g])(vi ) = θ
(i)
L ([g]; v1, . . . , vk),

where the last equality follows by comparing the definition of the i th Poincaré–Cartan form with the i th Legendre
transformation. �

4.4. Variational interpretation of the Poincaré–Cartan forms

In this section, we closely follow some of the ideas set out by Marsden, Patrick, and Shkoller in [6]. In that paper,
the authors gave a variational definition of discrete multisymplectic field theories. As we pointed out before, the class
of field theories that they consider corresponds to the case where the groupoid G over the standard fibre Q is the pair
groupoid Q × Q (see Section 5.1).

We now intend to redo their analysis to prove that the Poincaré–Cartan forms that we defined in Section 4.1, also
arise when considering variations of a morphism φ over a set Û such that the boundary ∂U is not fixed. Moreover, we
use these observations to derive a criterion of multisymplecticity, and show that the field equations (see Theorem 23)
are multisymplectic in that sense. Again, this is just an extension to the case of an arbitrary groupoid G of the
definitions in [6].

4.4.1. Arbitrary variations
Consider a finite subset Û of Xk with associated boundary ∂U . Now, let φ : V × V be a morphism and consider

a finite variation Ψ : R × ψ(Û ) → ψ(Û ) of φ over Û as in Definition 19. However, we now also allow nontrivial
variations of the field on the boundary ∂U .

When extremizing the action sum (12), there is now a contribution from the interior of U , as well as a contribution
from the boundary ∂U , which takes the following form (with the notation of Section 4.2):

d
dt

S(φt )

∣∣∣∣
t=0

=

∑
[x]∩∂U 6=∅

( ∑
l;[x]l∈∂U

(
θ
(l)
L (ψ([x])) · Γψ([x])

))
,

where Γ is the infinitesimal variation associated to Ψ . Once again, we see how the Poincaré–Cartan forms arise
naturally in the context of discrete Lagrangian field theories.

4.4.2. Multisymplecticity
By exactly the same reasoning as in [6], we obtain a concise criterion for multisymplecticity. We will not repeat

the entire proof, but we only highlight some of the key points. For more information, the reader is referred to [6].
Let us consider, first of all, the set M of morphisms φ : V × V → G that solve the discrete field equations. We

also assume that M can be given the structure of a smooth, infinite-dimensional manifold. Then, a first variation of
an element φ of M is a section Γ of PkG such that the associated finite variation transforms φ into new solutions of
the discrete field equations. As the action sum S can be interpreted as a function on the set of morphisms from V × V
to G, and hence defines by restriction a function (also denoted by S) on the set M.
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By an argument similar to [6, thm. 4.1], it can then be shown that, for any φ ∈ M and Γ1,Γ2 first variations of φ,
the trivial identity d2S(φ)(Γ1,Γ2) ≡ 0 can equivalently be written as

0 =

∑
[x]∩∂U 6=∅

( ∑
l;[x]l∈∂U

(
Ω (l)

L (ψ([x]))(Γ1,Γ2)
))
.

This characterization of multisymplecticity involves only the quadrangles [x] that contain edges which are part of the
boundary ∂U .

5. Examples

5.1. The pair groupoid G = Q × Q

In this section, we treat in detail the case where G is the pair groupoid Q × Q. The results we obtain in this case
agree with those in [6], which serves as a justification for our approach.

In this case, it is easy to see that Gk is just Qk : the identification is given by

((qk, q1), (q1, q2), . . . , (qk−1, qk)) 7→ (q1, q2, . . . , qk).

Furthermore, the prolongation algebroid PkG can be identified with the k-fold Cartesian product of T Q with itself.
For a vector field v on Q, the i th tangent lift of v is the following section of (T Q)k :

v(i) : (q1, q2, . . . , qk) 7→ (0, . . . , 0, v(qi ), 0, . . . , 0),

where v(qi ) occupies the i th place.
Now, let L : Gk

→ R be a Lagrangian and denote by L̂ the induced map on Qk . Then the i th Poincaré–Cartan
form is defined as

θ
(i)
L (q1, . . . , qk; v1, . . . , vk) = dL̂(q1, . . . , qi−1, ·, qi+1, . . . , qk) · vi ,

where vi ∈ Tqi Q for i = 1, . . . , k. This was the original definition of the Poincaré—Cartan forms in [6].
It is instructive to see what becomes of the concepts of finite and infinitesimal variations in this case: an infinitesimal

variation is just a vector field on Q, whereas a finite variation is the flow of such a vector field.
As we pointed out before, a morphism φ : V × V → Q × Q can be seen as an assignment of an element of Q

to each vertex in V . For the case of the square mesh of Fig. 1, we may therefore describe the field by assigning a
value φi, j ∈ Q to each vertex (i, j). Let L̂(q1, q2, q3, q4) be a Lagrangian density; then {φi, j } is a solution of the field
equations (17) associated to L if and only if, for all (i, j) ∈ V ,

∂L

∂q1
(φi, j , φi+1, j , φi+1, j+1, φi, j+1)+

∂L

∂q2
(φi−1, j , φi, j , φi, j+1, φi−1, j+1)

+
∂L

∂q3
(φi−1, j−1, φi, j−1, φi, j , φi−1, j )+

∂L

∂q4
(φi, j−1, φi+1, j−1, φi+1, j , φi, j ) = 0.

These equations were first derived in [6].

5.2. The Lie–Poisson equations

Consider now the case where the standard fibre Q is a point, and the groupoid G a Lie group. We will take
a particular triangular mesh in X = R2, constructed as follows. The vertices are the points in R2 with integer
coordinates:

V = {(i, j) ∈ R2
: i, j ∈ Z}.

However, instead of first specifying the set of edges, we start from the set of faces, which we define to be

F = {((i, j), (i + 1, j), (i + 1, j + 1)) ∈ V × V × V }.
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Fig. 6. Triangular mesh in R2.

The set of edges then consists of “horizontal” edges of the form ((i, j), (i + 1, j)), “vertical” edges of the form
((i, j), (i, j + 1)), and “diagonal” edges of the form ((i, j), (i + 1, j + 1)). This type of mesh was used in [6] as
well. The idea behind it is that, in the appropriate physical setting, the horizontal edges represent the spatial direction,
whereas the vertical direction represents the time direction.

Let us now consider a discrete Lagrangian L : G3
→ R. Note that G3 is diffeomorphic to G × G by mapping

an element (g1, g2, g3) ∈ G3 to (g1, g2). We denote the induced Lagrangian by L̂ , where L̂(g1, g2) = L(g1, g2, g3).
Given the fact that our triangular mesh is different from the ones we used in the body of the text, it is perhaps useful
to derive the field equations from scratch. Let φ : V × V → G be a morphism and consider a variation Ψ of φ over
some finite domain Û in G3. It is easy to see that, if [g] = ψ([x]) is an element of G3, then the effect of Ψ on [g] is
as follows:

[g] 7→ (h1(t)
−1g1h2(t), h2(t)

−1g2h3(t), h3(t)
−1g3h1(t)),

where h1, h2, h3 are now arbitrary curves in G, such that h1(0) = h2(0) = h3(0) = e, the unit in G.
Let us now focus on the factor h1(t). Following essentially the same reasoning as in Remark 21, we see that h1(t)

appears not only in the variation of [g] but in the variation of two additional triangles [ĝ] = ψ([x̂]) and [g̃] = ψ([x̃])

in the image of ψ as well (see Fig. 6).
The terms in the action sum involving h1(t) are therefore

S(φt ) = · · · +L(h1(t)
−1g1h2(t), h2(t)

−1g2h3(t), h3(t)
−1g3h1(t))

+ L(k1(t)
−1ĝ1k2(t), k2(t)

−1ĝ2h1(t), h1(t)
−1ĝ3k1(t))

+ L(m1(t)
−1g̃1h1(t), h1(t)

−1g̃2m2(t),m2(t)
−1g̃3m1(t))

+ · · · ,

where k1(t), k2(t) and m1(t),m2(t) correspond to the effect of Ψ on the other vertices. We now rewrite this in terms
of the induced Lagrangian L̂ and demand that φ extremizes the action sum to obtain the following set of discrete field
equations:

0 =
d
dt

S(φt ) = d
[

L̂(·, g3) ◦ rg1 ◦ i
]

· v1 + d
[

L̂(g1, ·) ◦ lg3

]
· v1

+ d
[

L̂(ĝ1, ·) ◦ rg3 ◦ i
]

· v1 + d
[

L̂(·, g̃3) ◦ lg̃1

]
· v1,

where v1 = ḣ1(0). As h1(t) is arbitrary, this implies that, for any six elements in the image of φ, distributed as in
Fig. 6, the following discrete field equations must hold:(

l∗g3
dL̂(g1, ·)− r∗

ĝ3
dL̂(ĝ1, ·)

)
+

(
l∗g̃1

dL̂(·, g̃3)− r∗
g1

dL̂(·, g3)
)

= 0.

In this expression, one can recognize, roughly speaking, two separate discrete Lie–Poisson equations (see [5]), one
for the “spatial” direction and one for the “time” direction.

The discrete Lie–Poisson equations arise, among others, in the context of reduction. Let G be a Lie group and
consider the pair groupoid G × G over G. Now, if L : Gk

→ R is a discrete Lagrangian, which is left-invariant in
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the sense that L(gh1, gh2, gh3) = L(h1, h2, h3) for all g, h1, h2, h3 ∈ G, and we consider the induced Lagrangian
L ′

: Gk−1
→ R defined as

L ′(h−1
1 h2, h−1

2 h3, . . . , h−1
k−1hk) = L(h1, h2, . . . , hk),

then the following holds: a discrete field φ : V × V → G will solve the field equations for L if its reduced field
φ : V × V → G solves the Lie–Poisson equations. This is proved below in greater generality. Note that one recovers
the Lie–Poisson equations by considering the morphism Φ : (g, h) 7→ g−1h.

Theorem 26. Let G ′ be a Lie groupoid over a manifold Q′ and consider a morphism (Φ, f ) : (G, Q) → (G ′, Q′).
Furthermore, let L ′

: G′k
→ R be a Lagrangian on G′k and consider the induced Lagrangian L = L ′

◦ Ψ on Gk ,
where Ψ : Gk

→ G′k is the map associated to Φ.
A morphism φ : V × V → G will satisfy the discrete field equations for L if the induced morphism Φ ◦ φ :

V × V → G ′ satisfies the field equations for L ′.

Proof. The proof relies on the following equality: for i ≤ k, [g] ∈ Gk , and v ∈ Ax G, where x = α(gi ),

v
(i)
[g]
(L) = [AΦ(v)](i)Ψ ([g])

(L ′),

which is relatively straightforward to prove.
With the same notation as above, this implies that

EL([g], [ĝ], [g̃]) · v = EL′(Ψ([g]),Ψ([ĝ]),Ψ([g̃])) · (AΦ(v)),

where we have defined the Euler–Lagrange operator EL : G3
× G3

× G3
→ A∗G as

EL([g], [ĝ], [g̃]) · v = v
(1)
[g]
(L)+ v

(2)
[g̃]
(L)+ v

(3)
[ĝ]
(L).

Therefore, if φ is such that Φ ◦φ is a solution of the Euler–Lagrange equations for L ′, then φ itself is a solution of the
Euler–Lagrange equations for L . �

Lie–Poisson reduction in discrete field theories is thus very similar to the corresponding theory in mechanics. We
glossed over some subtle differences, however, mainly related to the reconstruction problem. This will be treated in
more detail in a forthcoming paper.

5.3. Lattice gauge theories and discrete connections

The geometrical set-up described in Section 3 is very similar to the one used in the treatment of gauge fields on a
lattice (see e.g. [26] and the references therein).

Let us consider an arbitrary compact Lie group G, which we interpret as a Lie groupoid over a singleton {e}, with
e the unit element of G. For definiteness, we assume that the base space X is once again R2 and that a triangulation
of X is given.

A discrete gauge field or discrete connection is a map ψ : E → G, assigning a group element to each edge in R2.
The field strength or curvature of such a gauge field is the map Ω : F → G which assigns to each face f the product

Ω( f ) = ψ(e1) · ψ(e2) · ψ(e3),

where e1, e2 and e3 are the edges of f . Here, we tacitly assume that the edges are oriented and that ψ(e−1) = ψ(e)−1.
Interpreting the gauge group G as a Lie groupoid over e, it is obvious that discrete fields, in the sense of Definition 6,

correspond to flat gauge fields (i.e. gauge fields with vanishing field strength). Indeed, it is precisely the fact that these
discrete fields are groupoid morphisms, that makes the field strength vanish.

However, much of our formalism can be extended to the case of arbitrary, non-flat gauge fields. Indeed, let us
consider a gauge field ψ : E → G. In [27], the authors consider a groupoid P , the units of which are the elements of
V , while the elements of P are paths in E , i.e. sequences of composable elements e1, e2, . . . , em in E . A gauge field
then gives rise to a morphism A : P → G as follows:

A : (e1, e2, . . . , em) 7→ ψ(e1)ψ(e2) · · ·ψ(em).
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If A maps closed loops in E to the unit in G, the associated gauge field is flat. In this case, we have the following
interesting property: simplicially homotopic paths are mapped to the same element in G. This is the discrete version
of a well-known property of continuous connections: if ω is a flat connection, and γ, γ ′ are closed loops that are
homotopic, then the holonomy of γ is equal to that of γ ′ (see [28, p. 93]). We therefore obtain a morphism Â from P̂ ,
the groupoid of paths modulo simplicial homotopy, to G. In the case where X = R2, P̂ can be identified with V × V ,
and we are back at our starting point, that of representing flat gauge fields by morphisms from V × V to G.

Remark 27. At first, our use of flat discrete connections might seem to exclude the treatment of gauge theories.
A closer look will reveal that the flatness used in the main body of our text plays a similar role as the flatness (or
integrability) of the connections used in the connection-theoretic De Donder–Weyl treatment of classical field theories
(see [19,21]) and is hence quite unrelated to the curvature of the fields. �

6. Conclusions and outlook

In this paper, we have described a geometric model for discrete field theories. We extended the foundational
work done in [6] by allowing for discrete fields that take values in an arbitrary groupoid and we showed that
much of the geometric structures from (discrete) field theory, such as the Poincaré–Cartan forms and the notion
of multisymplecticity, carry over quite naturally to this set-up.

There remain many interesting open problems in this area. In a future publication, we intend to investigate the
problem of discrete reduction into further detail, as well as the reconstruction problem. It turns out that, just as in the
continuous case (see [29–31]) there appears an additional condition involving discrete curvature, which is absent from
the reconstruction problem in mechanics.

Another interesting link concerns the theory of discrete integrable fields as proposed by Bobenko, Suris, and co-
workers (see [32,33] as well as the references therein). After all, the kind of fields that we investigate here bear some
tantalizing resemblances to their zero-curvature representations.

Ultimately, and perhaps not unrelated to the previous point, one would hope that the techniques developed in this
paper can be applied to the construction of robust integrators for PDEs. It should be stressed, however, that the concept
of “symplectic integrator” for field theories is much more subtle than for simple mechanical systems and that the issue
of whether multisymplectic integration schemes provide qualitatively better results is usually decided on a case-by-
case basis (see for instance [34], where a number of symplectic and multisymplectic schemes are compared in the
case of the celebrated Korteweg–de Vries equation).
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223–250.
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